Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The intelligence of the human biological system is enabled by the highly distributed sensing receptors on soft skin that can distinguish various stimulations or environmental cues, thus establishing the fundamental logic of sensing and physiological regulation or response. To replicate biological perception, two approaches have emerged: artificial nervous systems that utilize soft electronics as biomimetic receptors to convert external stimuli into frequency-encoded signals, and biohybrid solutions that integrate living cells, plants, or even live animals with electronic components to decode environmental cues for life-like sensations. However, most current biohybrid approaches for artificial sensation are based on eukaryotic cells, which suffer from slow growth, stringent culture conditions, environmental susceptibility, and short lifespans, thus limiting their integration into practical wearables or robotic sensory skins. Here, we introduce fungi-based printable “Mycoelectronics”, which are created by additive bioprinting of living fungal mycelium networks onto stretchable electronics, as a practical living thermo-responsive sensory platform. This Mycoelectronics approach leverages fungi’s capacity for rapid biological responsiveness, cultivability with exponential growth, stability and self-healing in ambient conditions, bioprintability for scalable manufacturing, and mechanical flexibility for seamless integration with soft electronics. Critically, we discovered that the thermal responsiveness of the fungal network arises from intrinsic cellular processes—specifically, heat-induced vacuole remodeling and fusion, which modulate ionic transport and thus the electrical conductivity of the mycelial cells and networks, enabling a rapid temperature response. By bridging the gap between cell biology and soft electronics, the Mycoelectronics device with a living mycelium network functions as a thermal sensation system with rapid response and intrinsic self-healing properties, autonomously restoring sensing capabilities after damage or autonomously establishing sensor pathways in hard-to-reach locations. Furthermore, by integrating fungal thermal sensing with electronic circuits, we established a hybrid bioelectronic reflex arc that can actuate muscles and initiate diverse actions, suggesting promising applications in future neurorobotics and neuroprosthetics.more » « lessFree, publicly-accessible full text available October 24, 2026
-
Free, publicly-accessible full text available November 13, 2026
-
Free, publicly-accessible full text available October 20, 2026
-
Abstract Microrobots hold immense potential in biomedical applications, including drug delivery, disease diagnostics, and minimally invasive surgeries. However, two key challenges hinder their clinical translation: achieving scalable and precision fabrication, and enabling non‐invasive imaging and tracking within deep biological tissues. Magnetic particle imaging (MPI), a cutting‐edge imaging modality, addresses these challenges by detecting the magnetization of nanoparticles and visualizing superparamagnetic nanoparticles (SPIONs) with sub‐millimeter resolution, free from interference by biological tissues. This capability makes MPI an ideal tool for tracking magnetic microrobots in deep tissue environments. In this study, “TriMag” microrobots are introduced: 3D‐printed microrobots with three integrated magnetic functionalities—magnetic actuation, magnetic particle imaging, and magnetic hyperthermia. The TriMag microrobots are fabricated using an innovative method that combines two‐photon lithography for 3D printing biocompatible hydrogel structures with in situ chemical reactions to embed the hydrogel scaffold with Fe3O4nanoparticles for good MPI contrast and CoFe2O4nanoparticles for efficient magnetothermal heating. This approach enables scalable, precise fabrication of helical magnetic hydrogel microrobots. The resulting TriMag microrobots, with the synergistic effects of Fe3O4and CoFe2O4nanoparticles, demonstrate efficient magnetic actuation for controlled movement, precise imaging via MPI for imaging and tracking in biological fluid and organs, including porcine eye and mouse stomach, and magnetothermal heating for tumor ablation in a mouse model. By combining these capabilities, the fabrication and imaging approach provides a robust platform for non‐invasive monitoring and manipulation of microrobots for transformative applications in medical treatment and biological research.more » « less
An official website of the United States government
